
Object-Oriented Software Architecture for
Large-Scope Numerical Simulation

David Gedeon
Gedeon Associates
Athens, Ohio 45701

September 1996

An article on Sage submitted to Computational Science and Engineering
magazine, but rejected for publication. Sigh...

Fresh out of graduate school in 1975 I found myself working in a small
engineering Þrm developing stirling-cycle machines. For those of you who
forget, the stirling cycle is a closed thermodynamic cycle involving a high-
pressure gas such as helium alternately compressed and expanded in two
piston cylinders connected by heat exchangers through which the gas ßows
back and forth. The heat exchangers change the temperature of the gas as
it ßows from one piston cylinder, the so-called compression space, to the
other, the expansion space. The point of all this is to convert thermal energy
to mechanical work or mechanical work to thermal energy in the form of
refrigeration. The details are not important here. What is important is that
my job was to develop a thermodynamic modeling program for such devices
using the tool of the time, which was fortran iv running in batch mode on
the local university mainframe computer. I had been trained in mathematics
and physics, so this seemed like a reasonable idea.
Reasonable or not, I eventually did develop such a program. It was based

on a one-dimensional Þnite-difference model and while it certainly obeyed
some of the more obvious laws of physics � for example, thermodynamic
efficiency was generally less than the theoretical Carnot limit � the model
suffered from several omissions of detail with the result that predicted power
levels and efficiencies were not always realized in the laboratory. In fact,

1

on several occasions, machines perfectly reasonable from a modeling point of
view failed to run at all because of something like mechanical friction missing
from the model.
Thus began my life�s work, which has continued more-or-less along these

lines these last 20 years. While I am still developing software tools for model-
ing stirling-cycle machines, these days the machines are more apt to be cryo-
genic refrigerators for electronics applications rather than, say, automotive
engines, which were the fashion of the time. And the mainframe computer
has given way to a desktop computer. And my language of choice is now
Borland International�s Delphi, which is a visual programming environment
based on their Object Pascal language. Also, I now work for myself as an
independent software developer and consultant rather than as an employee
of any one company.
So my work has brought me into contact with a large assortment of prac-

ticing engineers mostly in the USA and Europe. And what do I Þnd about
these engineers? First of all, they are always changing things. My original
models were for Þxed geometries, but this was never enough. Someone al-
ways wanted to stick in a valve here, a manifold there or introduce some
new gizmo that I hadn�t thought to include. Secondly, they are driven by
impure motives such as cost reduction, pressure-vessel regulations, customer
requirements and the whims of evil project managers. Mathematically speak-
ing, they have constraints and they need to optimize their machines within
these constraints. Thirdly, the stirling-cycle part was generally only a small
piece of a total system. So it simply would not do, for example, to design the
perfect stirling-cycle machine operating at 1 Hz with a 10 cm piston stroke
if it had to be driven by a 60 Hz linear motor with 10 mm stroke. What was
I to do?
Fortunately, about that time the art of computer programming had evolved

object orientation and the visual interface. The concept of software objects
was intriguing because it suggested a way out of the trap of micromanag-
ing all aspects of a numerical model at the time of programming. It would
now be possible to develop a framework in which the user could interconnect
relatively simple component parts into a complete system. And the visual in-
terface could complete the illusion by giving visual presence to these software
objects.
Possible, but not easy. There I was, in the early days, armed with a few

snippets of object-oriented code, convinced that herein lay the path to mod-
eling a complete Boeing 747 aircraft, but yet wondering where all the details

2

would go. Certainly there must be a few details in a Boeing 747? As I pro-
gressed, my ideas about object oriented modeling became more complicated
while the machines to be modeled became simpler. And so it went for about
three years, until now the machines I can model are about as complicated as
a bicycle.

Sage from a User�s Perspective

The name of the program that models machines about as complicated as
a bicycle � namely stirling machines � is Sage, which does not stand for
anything in the usual sense of a computer program, but rather suggests its
behavior as somewhat of a wise overseer of model components. Here are the
main things Sage does:

� Allows a user to create a custom engineering model by graphically
selecting component parts from a palette, dropping them into a window
and connected them together as required.

� Manages the interconnected system of components so the user can eas-
ily change data inputs, solve the underlying equations of the system
and view the results.

� Supports interactive system-wide optimization of an arbitrary set of
input variables subject to an arbitrary number of constraints (nonlin-
ear equality or inequality) with an arbitrary objective function to be
minimized or maximized.

Notice that nothing said about Sage so far is speciÞc to any particular class
of model components. Sage would be as happy to work with electrical or
chemical models as mechanical models. In fact, with any system comprising
a number of well-deÞned components that can be interconnected together.
It is just that because of my limited resources and expertise, the only model
components available at the moment apply to stirling-cycle machines.
Sage runs under the Microsoft Windows environment and employs both

graphical and text-based interfaces depending on what the user is focused on
at the time. By way of example, Þgure (1) shows how a stirling cryogenic
refrigerator appears in Sage from the graphical point of view. A user might
use this point of view when creating new models or tracing interconnections

3

between model components. Figure (2) shows a text-based view of a particu-
lar model component, the important viewpoint for specifying input variables
or monitoring output values.

Sage from a Programmer�s Perspective

So how does Sage work? At this point a broad sketch may be useful.
First, there are the model components themselves which form a hierarchy

of software object classes. There is an ultimate ancestor class from which
all model components descend � basically just a container for whatever
variables the model will contain, with a number of methods (functions and
procedures) and data structures (dynamically-sized lists or collections) for
managing these variables. Subsequent descendants add the functionality for
whatever it is the model component is supposed to be modeling.
The model variables themselves are considerably more elaborate than the

variables employed in a standard programming language such as fortran,
Pascal or C. In addition to storing a numerical value corresponding to some
physical quantity, these variables also manage themselves as much as possible,
rather more like actors on a stage than puppets managed from on high.
Variables, too, form a hierarchy of object classes.
Next there are software layers that know how to process user commands

to create model components at run time and organize these components into
a whole. At the Þrst level of organization, model components reside within a
dynamically-allocated tree data structure. There is always a root-level model
component. Then, depending on what is being modeled, there are some num-
ber of child components, each with its own child components, and so forth.
Model trees are convenient from a programmer standpoint because they can
be scanned in an orderly sequence for purpose of creating data Þles, output
listings, collections of things, performing searches or carrying out various op-
erations. Figure 3 shows this structure for the cryogenic refrigerator depicted
in Þgure 1. In another level of organization, model components are intercon-
nected across their boundaries for purposes of exchanging forces, ßuid ßows,
etc. Boundary connections bring a model to life, much as the connections
among cells bring a biological organism to life. They are also helpful to the
user in visualizing the model�s purpose.
And then, there are yet more software layers, generally object classes,

that manage tasks such as equation solving and optimization. The impor-

4

Figure 1: A stirling-cycle refrigerator assembled from individual model com-
ponents. Graphical icons represent the components while labeled and num-
bered arrows represent various types of boundary connections: úmGt = gas
ßow. Qstdy = steady heat ßow. Pphsr = phasor (sinusoidal) pressure between
volume displacements. ρstdy = mean density establishing pressure reference.

5

Figure 2: Text window for a single model component within a stirling-cycle
refrigerator.

6

Figure 3: The tree data structure for the model components comprising a
stirling-cycle refrigerator.

7

tant thing about these entities is that they must access model components
and variables in a completely generic way without knowing or caring about
speciÞc implementation details.
Evidently, much of the work in designing Sage was in deciding the best

way to delegate responsibility for the various tasks of model management
among the various software object classes. This was a little like building
a transcontinental railroad from both ends at once, with logical rails not
always meeting up in the middle. Part of the trouble early on was a too-rigid
insistence on the object-oriented paradigm. For example, it did not dawn
on me for some time that there was no way a model component could be
completely responsible for solving, much less optimizing, itself within a total
system. Somewhere there had to be a level of software responsible for overall
management.

Smart Variables

Beginning now a more detailed look at things, we might as well start with
the fundamental building blocks of model components � the variables.

Behavior Types

The ultimate ancestor of all variables is a data structure known as TVar that
does not yet know what sort of numerical data it stores, but only whether
or not that data is valid and what to do about if it is not, depending on
the way the variable may be used in a model. There are four possible ways:
as a constant, independent variable, dependent variable or implicit variable.
This information, together with the state of validity are encoded within a
ßag byte. Collectively, constants and independent variables form the inputs
of a model component. Dependent and implicit variables form the outputs.

Constant

A constant holds a numerical value (real, integer, complex, . . .) that remains
Þxed during solution or optimization but may be changed by the user from
time to time. Constants generally hold normalization quantities or computa-
tional grid dimensions, both of which are at a conceptually higher level than
the model itself. A constant is always valid.

8

Independent

An independent variable is like a constant except that its value may also be set
by an external driver, such as the optimizer. Independent variables generally
hold values for physical dimensions or model parameters. An independent
variable is also always valid.

Dependent

A dependent variable holds a numerical value that is dependant on other vari-
ables, possibly other dependent variables, but eventually on non-dependent
variables. All dependent variables have a mechanism � an evaluation func-
tion � by which they know how to evaluate themselves explicitly. After
evaluation, a dependent variable becomes valid but it may become invalid
subsequently if the variables upon which it depends change.

Implicit

Finally, an implicit variable holds a numerical value that is to be iteratively
reÞned by an external solver to satisfy some implicit relationship among
model variables, usually including itself. All implicit variables have an ex-
plicit evaluation function for providing their initial value and an implicit
evaluation function for evaluating the degree to which their implicit relation-
ship is satisÞed. Implicit relationships are generally much easier to formulate
and extend to ever more complex systems than explicit relationships. Tech-
nically speaking, an implicit variable is always valid after it is Þrst initialized,
even though it may not actually satisfy all the implicit relationships which
reference it until after the solver converges.

Evaluation Logic

As with variables in any programming language it is possible to assign or
reference the numerical value of a Sage variable. But there are also side
effects.
The side effects of assigning a variable�s numerical value depend on its

behavior type. If constant, independent or implicit, then the variable calls
upon its parent model component to invalidate all the dependent variables
that could possibly depend on the new value. If dependent, then the variable
calls upon its parent model component to push a pointer to itself onto a

9

temporary stack of valid variables so they can be easily invalidated later if
required. In all cases, the variable sets its own valid ßag true.
The side effects of referencing a variable�s numerical value depend on

its current state of validity. If valid, then there are no side effects � the
stored value is just returned. If invalid, then prior to returning the stored
value the variable Þrst validates itself by assigning its numerical value to the
result returned by its internal evaluation function, according to the logic of
the assign process just discussed. Dependent variables may have to validate
themselves a lot as model inputs change or during the iterative solution
process. Implicit variables generally have to validate themselves only once
at the time of Þrst reference. Constants and independent variables are born
valid and always remain that way.
This evaluation logic may seem a needlessly round-about way of doing

things. But it does save time. In some cases a lot of time. Consider, for
example, a dependent variable whose value depends on a lengthy calculation
involving many lower-level variables whose values mostly remain Þxed. Then,
rather than repeat this evaluation process each time the Þrst variable is
referenced, it is much faster if it can just cut to the chase and return its
stored value so long as it is guaranteed valid. The above logic supports this
behavior.
One logical thread left unexplored is how a model component knows which

dependent variables, possibly in other model components, depend on a given
constant, independent or implicit variable within itself? This could get messy
if model components were to keep track of this on the individual-variable
level. What they do instead is keep track on the model-component level. The
basic container class for variables, from which model components descend,
is known as TVarSet. Each TVarSet instance contains a collection known as
the Affected VarSet Collection, or AVC for short. The AVC contains pointers
to all TVarSet instances with dependent variables affected by some constant,
independent or implicit variable of itself. The AVC is created at runtime
by accessing the dependent variables of the entire model tree one by one,
allowing each evaluation-function call to propagate until it ultimately ter-
minates in references to constants, independent or implicit variables, which
announce this fact. Then, a pointer to the TVarSet instance owning the origi-
nal dependent variable is stored in the AVC of each TVarSet instances owning
a terminally referenced variable. Of course, each time the model structure
changes (as when new components are added) the AVC collections must be
rebuilt.

10

Names

All variables have a Þeld which holds a pointer to their name. A name is
useful for referencing the variable in user-deÞned algebraic expressions (dis-
cussed later) and for presenting the variable for input and output purposes.
Often a variable is completely hidden from the user, in which case the name
is a space-saving nil pointer. But when a name is required it actual consists
of a simple data structure containing two strings: an identiÞer and a short
deÞnition. For example �Lnorm� might be the identiÞer for a variable with
the deÞnition �length scale�. This identiÞer is separate from the identiÞer by
which the programmer refers to the same variable (it is for run-time purposes
while the other is for the Delphi compiler) but its purpose and syntax are
similar.

Numerical Types

Only after all the above behaviors are deÞned do variable classes get down
to dealing with particular numerical data types. Descended from TVar are
a number of specialized variable classes for the different sorts of numerical
values convenient in numerical models.

Reals

Real variables have an extended-precision ßoating-point data Þeld. Variables
of this type are the most common choice for all behavior types. When used
as constants or independent variables, there are variations that restrict their
values to non-negative, strictly positive or closed-interval ranges. These have
a built-in ability to properly validate user input. When used as an implicit
variable there is a variation designed to restrict the solution from chang-
ing too quickly during the solving process, thereby preventing convergence
instability.
There is even a special sort of real-valued dependent variable whose value

comes from a string expression supplied by the user interactively at run time.
This string expression is stored as the data Þeld of the variable and might look
something like: Pressure * Diameter / (2 * WallThickness), which resembles
an expression used in any typical programming language, except the variable
identiÞers referenced are those of other variables in the model at run time.
A user might decide that such an expression is appropriate for a variable

11

named Stress, an identiÞer also user supplied. Such variables are more than
just a luxury. They are essential for enabling a user to extend the model
in ways not envisioned by the programmer, especially during optimization.
Optimization will come up as a separate topic later on.

Integers

Integer variables have an integer data Þeld. Variables of this type are used
for constants or dependent variables but not independent or implicit vari-
ables because the solver or optimizer cannot deal with discrete integer val-
ues. There are variations that restrict their values within a closed-interval
range. And there is a special variation used only for constants that estab-
lish the dimensions of repetitive data structures such as computational grids.
Changing the value of such a variable sets into motion a mechanism that
dynamically re-builds any affected data structures.

Complex or Phasor

Complex variables have two extended-precision Þelds useful for represent-
ing complex numbers or phasors in application models. They may behave
as constants, independent or dependent variables, but not implicit variables
because of assumptions made by the solver. Phasor variables are minor vari-
ations of complex variables that perform i/o in polar rather than Cartesian
format. Complex variables are especially useful for models containing linear
equation systems and sinusoidally varying quantities.

Splines

Spline variables have a pointer to a data structure known as TSpline as their
data Þeld. Splines are used for representing cubic splines as constants, in-
dependent or dependent variables. The TSpline data structure consists of
an arbitrary number of extended-precision interpolation pairs of the form
(T,F (T)) where T represents an independent variable such as temperature
and F (T) a dependent variable such as some temperature-dependent prop-
erty. Built into TSpline is an interpolation function to return F (T) for inter-
mediate values of T . One variation of the basic spline variable restricts the
independent variable to the range 0 ≤ T ≤ 1. Another variation transforms
both T and F (T) by the log function before cubic-spline interpolation as if

12

interpolation were done on a log-log plot. And yet another variation trans-
forms F (T) only by the log function before cubic-spline interpolation as if
interpolation were done on a semi-log plot. Spline variables are especially
handy for specifying things like thermophysical properties as a function of
temperature or � if the independent variable represents position along the
axis of a computational domain � any sort of initial value or boundary
condition as a function of position.

Fourier Series

Fourier series variables have a pointer to a data structure known as TF-
Series as their data Þeld. Fourier series are used for representing Fourier
series as constants, independent or dependent variables. The TFSeries data
structure consists of an extended-precision mean value, with a number of
extended-precision cosine and sine coefficients representing a real-valued pe-
riodic function F (ωt) with period 2π. Built into TFSeries is an evaluation
function to return F (ωt) for any value t. There is a minor variation which
does i/o of harmonic coefficients in polar rather than Cartesian format � i.e.
replacing (an, bn) in an cosnωt + bn sinnωt with (cn, rn) in cn cos(nωt+ rn).
Fourier series variables are very convenient for representing outputs of time-
periodic models.

Enumerated

There are also variable classes that store more complicated data types used
as constants. The user selects possible instances of such variables from an
enumerated list rather than specifying a possibly-large set of individual values
for the underlying data type. A good example would be the gas-property
variable whose underlying data type TGas contains several real or spline-
valued Þelds corresponding to the thermophysical properties of a particular
gas. The user would specify such a variable by selecting a name such as
helium from a list. Entering detailed thermophysical properties for a suitable
list of such variables is a data-base management task outside the scope of
Sage.

13

Referencing and Assigning Non-Reals

Real variables may be directly referenced by name in user-deÞned expressions
or, if independent, assigned by an external driver such as the optimizer. It is
very convenient if the real parts of other numerical types can be likewise ref-
erenced or assigned. For example, if an independent complex-valued variable
X represents piston displacement, then a user might want to reference or as-
sign the amplitude of X. The Sage complex-variable class allows this through
use of the Amp sub-identiÞer attached to the main variable identiÞer, as in
X.Amp. Sub-identiÞers are generally available for all the real-valued sub-
Þelds a user might be interested in accessing within the the complex, spline
or Fourier series numerical types.

Input and Display

Every type of variable is responsible for managing the input of its numerical
data in the event it is used as a constant or independent variable. The same
goes for its output format too, regardless of the mode of use. Although, only
variables with non-nil names are ever called upon to display their output.
Input is in the form of an interactive dialog, the details of which are

necessarily operating-system speciÞc. But, generally, the presentation is in
the form of a dialog which displays the identiÞer and deÞnition strings and
allows the user to modify the numerical data value, be it real, integer, or
whatever.
Output is in the form of a data structure containing the identiÞer and

deÞnition strings followed by a value string with an optional dynamically-
sized collection of sub-value strings for the more complicated data types.

Evaluation Functions

In support of the evaluation logic previously discussed, there are three evalu-
ation functions that variables may contain: Eval, Fimpl and Norm. The use of
these evaluation functions in the context of the various evaluation behaviors
can be best summarized in the form of a table:

constant independent dependent implicit
Eval � � evaluation initialization
Fimpl � � � solution
Norm � normalization normalization normalization

14

Depending on allowed behavior types, a variable class may not deÞne all these
evaluation functions. And it is not quite correct to say that the functions
are contained in the variables. What is contained, actually, are just function
addresses as data Þelds, possibly nil addresses if particular evaluation func-
tions are not required in a given instance. These addresses are supplied as
constructor arguments at the time of variable creation.
In the Delphi Language, the above evaluation functions are accessed

through what are known as properties. Properties are referenced like or-
dinary data Þelds. For example, Val is the property associated with the
Eval function. A reference to Length.Val for a variable named Length calls
its Eval function or just returns its stored numerical value, according to the
evaluation logic previously discussed. This is all transparent to the program-
mer who just references Length.Val as if it were a variable in a conventional
programming language. Properties may also be assigned like ordinary data
Þelds. For example, an assignment to Length.Val would set its value Þeld
and also carry out any of the side effects previously discussed. Part of the
power of Delphi properties is that the Val property can be overridden for
each variable class to have the same type as the numerical data Þeld. So,
for example, one might assign or reference a complete Fourier series directly
through the Val property.

Explicit Evaluation

The Eval function returns the current value of a dependent variable or the
initial value of an implicit variable. For example, Þgure 4 contains a the
Delphi code for a dependent-variable evaluation function, one of several such
functions in a model component dedicated to deÞning internal geometries for
heat exchanger ducts. Although this example is particularly simple, evalua-
tion functions are generally no more than a few lines of code long � even for
variables within nodes of computation grids representing complex physical
phenomena, such as compressible gas ßow.
While each evaluation function may be relatively simple the effect of

many taken together may be quite complex. A typical evaluation function
will generally reference the Val property for other variables, some of them
dependent variables. If these turn out to be invalid at the time of evaluation,
then they too will call upon their evaluation functions, referencing yet more
Val properties. This process may go on for a while, cascading throughout
a vast network of variables, until eventually the Þrst evaluation function

15

function TubDctAflowEval(AParent: TTubDct): Extended; far;

begin

with AParent do

Result:= Ntube.Val * 0.25 * Pi * Sqr(Dtube.Val);

end;

Figure 4: A simple evaluation function accessed by a dependent variable
name Aßow (ßow area) contained within a particular sort of heat-exchanger
duct, the purpose being to calculate itself in terms of independent variables
Ntube (tube number) and Dtube (tube diameter).

returns. But complex as this process may be, the programmer does not need
to worry about it directly. It is automatically managed by the architecture.

Implicit Evaluation

The Fimpl function speciÞes the implicit relationship to be satisÞed for an
implicit variable. For example, Newtons second law �Force = Mass × Accel-
eration � might be viewed as an implicit relationship for purposes of solving
Mass, especially if were not so simple to isolate Mass on one side of the
equation. Say, for example, if Force somehow depended on Mass in some
especially perverse model. The actual evaluation function would return the
result �Force - Mass × Acceleration �, which is zero when Newton�s law is
satisÞed. Presently, Fimpl is always a real-valued function with the returned
value measuring the degree by which the implicit relationship is not satisÞed.
A Delphi code example of an implicit-relationship function is shown in Þgure
5. The task of simultaneously zeroing the Fimpl functions for all implicit
variables of the entire model is the job of Sage�s nonlinear equation solver.

Normalization

The Norm function returns a real-valued normalization constant used for scal-
ing the value of an independent, dependent or implicit variable to the order
of one so that it may be more conveniently dealt with by Sage�s optimizer
or solver. It is a function, rather than just a real data Þeld, to allow the
possibility of referencing one or more constants in an expression similar to
one that might be used for the Eval function.

16

Data Streaming

Finally, every class of variable is responsible for loading and storing its in-
ternal data to or from a storage stream. A stream is a free-form linear
concatenation of arbitrary data types generally read or written sequentially
from beginning to end. Streams are general concepts supported within the
Delphi programming environment and are usually associated with disk Þles,
although streams in random-access memory are also possible.
One of the hard parts about streaming variables concerns reading and

writing the addresses of evaluation functions and the like which are stored as
data Þelds within the variables. These cannot be streamed directly because,
of course, they are apt to change depending on where the program is loaded
in memory. So they are streamed indirectly by name, or rather by unique
integers associated with each such function. This necessitates a bit of house-
keeping code where the address of each evaluation function is associated with
its corresponding integer storage value. This code is executed within a vir-
tual (polymorphic) method overridden for each TVarSet containing variables
with evaluation functions.

Variable Collections

Variables acting alone are not worth much. They must be organized together
into increasingly more complicated structures before they can hope to do any
worthwhile modeling. The analogy of primitive cellular life forms swimming
around in a primordial sea comes to mind. Only after these cells Þnally
organize into complex organisms do we get the interesting results. This
analogy with life, by the way, has continued to afflict me all through the
development of Sage. I�ve come to rely on it as a guide to when I have done
something right.
But at any rate, the Þrst level of organization of variables into higher

forms is TVarSet, which has already found its way into the previous discus-
sion. Essentially, TVarSet serves as an indexed collection for the variables it
owns, although being an abstract collection, it does not yet own any vari-
ables. Descendants of TVarSet will, of course, own variables. Sometimes
these variables will be nameless entities referenced only by their index num-
ber. Sometimes they will be have individual identiÞers so they may be most
conveniently referenced during programming.

17

The purpose of TVarSet is to implement a number of low-level variable
management routines that it will pass on to its descendants. In support of
this it deÞnes some useful data structures, the following of which will already
make sense in terms of the previous discussion:

Name Structure Purpose
Parent pointer Parent TVarSet instance.
ChildVarSetC collection Child TVarSet instances.
AffecVarSetC collection TVarSet instances whose dependent vari-

ables are affected by constants, indepen-
dent or implicit variables of self.

ValidDepStack stack Currently valid dependent variables.
VarRelator linked list (integer, address) pairs for loading and

storing evaluation functions to a stream.

The more complex Þelds of TVarSet are actually pointers to the data struc-
tures in question, with the data-structures themselves (collection, stack,
linked list) residing in dynamically allocated memory.
The ChildVarSet collection is worthy of note. It is the basis for the eventual

tree structural organization of model components. Many of the procedural
methods built into TVarSet are designed to work in a recursive matter down
through all generations of child TVarSet instances, starting from the level at
which the method is Þrst accessed.

Store Thyself

One of the interesting things about TVarSet instances is they have the ability
to load and store themselves to or from a stream, usually associated with a
disk Þle. This is not as hard as it might sound because all variables and
most data structures within are already streamable objects that know how
to load and store their own internal data. So, for example, the TVarSet store
method proceeds something like this:

� asks all owned variables to store themselves
� asks other owned data structures to store themselves

18

� asks all children in ChildVarSetC to store themselves
Evidently, recursion comes into play in the last step. The companion load
method proceeds along similar lines. The resulting stream is a total mess
to the untrained eye but makes complete sense when read or written in the
order in which the various load and store methods are called.
But when it comes time to re-load objects from a stream, how does Sage

know ahead of time which object class methods to call upon to do the loading?
The answer is encoded in the stream. Each streamable object has a unique
class-identiÞer number associated with it by which it is recognized in the
stream. This number immediately precedes the object�s data. Loading from
the stream involves reading this identiÞcation number, scanning a lookup
table for the appropriate object class, then calling on the load method of
that class to read its data. This is mostly automatic, except registering
object classes and their stream identiÞers is a necessary initialization step.
A somewhat different problem with a similar solution is how to store

and load pointers to object instances owned elsewhere. Sometimes this is
inevitable as when a descendant of TVarSet uses a locally-declared pointer
to refer to a variable owned by another TVarSet instance. It would not do
to load and store duplicate copies of the variable. Their data Þelds would
quickly get out of sync. Instead, such pointers are stored indirectly, usually
through the associated index in some collection, and re-generated on loading
by referencing that collection. This sometimes requires use of a temporary
Þxup list when, for example, the collection in which the original object resides
is not yet loaded from the stream. In a Þxup list, all pointer variables that will
eventually reference the yet-to-be loaded object are temporarily conÞgured
into a linked list, pointing to each other in succession, with the beginning
node of the list stored in some temporary variable. Then after the load
sequence progresses to the point where the object to be pointed at has a Þrm
address, the Þxup list is traversed and all references Þxed up, after which the
list vanishes.
Having a way to store TVarSet data to disk Þles is essential. And streams

are a powerful and convenient way to do so. But they have their downside.
The downside is that streams make object class maintenance more difficult
because any modiÞcation that introduces a new data Þeld, such as a new
variable, suddenly makes all previously stored instances of its former self un-
loadable. At least not without some kind of data-conversion process. And
because of the nature of streams, this data conversion process typically in-

19

volves compiler directives within each modiÞed object�s load method to deal
with data Þelds on a case-by-case basis, rather than a separate self-contained
code module.

Model Components

An immediate descendant of TVarSet is TModel, the ancestor of all model
components. The TModel class support a number of methods intended for
user interaction, as well as inheriting all TVarSet methods. Also ßeshed out
are the rudimentary structures and behaviors required for connecting to other
TVarSet instances across their boundaries.

Being Born

Model components are designed to be created at run time, at the drag-and-
drop whim of the user, rather than as pre-ordained by the programmer. So
where do they come from? They come from seeds. And how do these seeds
sprout? They germinate. Again, the analogy with life � plant life, at any
rate.
The way this works is that model component instances are created in a

two step process. The Þrst step gives them only a visual presence so that
they can appear as a bitmap in a model component palette. The second step
is germination, after which they completely ßesh out all their variables and
other data structures to do whatever it is they do. But they still appear as
a bitmap, only now in a special window for living model components. Once
alive, a model component has the ability to Þll the palette with seeds of
its own, representing possible child model components. Here the life analogy
breaks down because there is no mating process required to beget child model
components. And the child model components are generally not identical to
the parent, but rather more like attachments or subsystems. For example,
a child model to a gas domain in Sage might be an inlet through which gas
ßows.
Sometimes the seeds created by a given model component contain point-

ers that reference variables in the parent component. This is useful when, say,
a seed for a child-component containing a computational grid needs to know
the number of nodes to create upon germination according to the value of
a variable owned by the parent. Even after germination, this umbilical cord

20

remains uncut so that child model components are rarely completely inde-
pendent of their parents. In fact, child model components frequently call
upon their parents to perform certain functions, and the other way around.

Connections

After germination, a model component is a self contained entity with a valid
internal solution in the absence of external inßuences. For example, a com-
ponent representing a thermal conduction path just produces an isothermal
state as its solution if unconnected to a source and sink temperature. But the
interesting thing is what happens when one connects two model components
together. For example, a temperature source to a conduction path. The con-
nection process dynamically creates a third invisible object descended from
a class named TConnector, itself descended from TVarSet. The purpose of
this connector object is to provide a common boundary-value variable (or
variables) to be used by the adjoining model components as part of their
solution and to receive from those model components, in exchange, sufficient
information to establish the validity of the boundary variable. This informa-
tion generally takes the form of some quantity that must be conserved across
the connection.
Take steady heat ßow for example. One might imagine two thin heat-

conducting rods connected in series between an isothermal source and an
isothermal sink. Each rod is a separate model component and the connection
in the middle is the current point of interest. The physical principle governing
heat ßow is this: Heat ßows across the connection until the rod endpoint
temperatures are equal. Simple. The Sage equivalent goes like this: Heat
ßow is an implicit variable managed by the connector object (TConnector
instance) in the middle. Each rod maintains its own independent solution,
producing an axial temperature distribution as a function of connector heat
ßow. When the user connects the two rod ends together, each rod receives
a pointer to the connector object which it can call upon to read the current
value of heat ßow. Meanwhile, the connector object receives pointers to
the appropriate endpoint-temperature variables within both rod components.
The connector evaluates the difference of these two temperatures as the to-
be-zeroed evaluation function associated its implicit heat ßow variable.
So it goes with all the various types of information that can pass between

model component boundaries. When it comes right down to it, there are
surprisingly few types of information that pass across boundaries. Forces,

21

pressures, heat ßows, ßuid ßows, electrical currents, just about does it.
Visually speaking, boundary connections appear as numbered arrows at-

tached to model-component icons as shown in Þgure 1. The illusion is that
connection is merely a matter of successive mouse clicks upon oppositely-
oriented and similar-typed arrows. Arrows are shown either right-pointing
or left-pointing emerging from the sides of the model components. This
works well for one-dimensional model domains where the left-pointing ar-
rows correspond to the negative endpoint boundary and the right-pointing
arrows to the positive endpoint boundary. I have not yet had to deal with
multi-dimensional solution domains where boundary connections might be
made at odd angles � for example, connections representing chemical bonds.
But such connections should be possible without fundamentally altering the
scheme of things.

Grids

Numerical models often employ computational grids for the solution of Þnite-
difference approximations to continuous differential equations. Grids are
descended from TVarSet, but the variables owned by the grid are only those
that apply to the grid as a whole, like node spacing for example. The nodes
of the grid, also descended from TVarSet, contain the actual solved or state
variables. So a grid is then an indexed collection of child nodes (similar to
an array), each of which contains an indexed collection of variables. The grid
itself has methods for operations that apply to the grid as a whole, such as
averaging and integrating. The nodes have methods for operations applying
to individual nodes such as state variable evaluation or Þnite-differencing.
The evaluation functions for the variables in the nodes carry out the de-

tailed operations of whatever physical model the grid is supposed to be rep-
resenting. And these operations generally depend on node position within
the grid. For example, in a grid representing the gas within a heat-exchanger
duct, a node variable named Rho, representing density, might evaluate itself
at even spatial indices by interpolating from neighboring values. At odd spa-
tial indices, it might evaluate itself implicitly according to a Þnite-difference
version of the continuity equation ∂ρ

∂t
+ ∂ρu

∂x
= 0. The operations of spatial

and time derivatives would, of course, involve state variables from neighbor-
ing nodes. This very example appears in Þgure 5. Note that there is not
much programming work involved to implement a Þnite-difference equation

22

function GasSxtNodeRhoFimpl(AParent: TGasSxtNode): Extended; far;

begin

with AParent, GetGrid, GetModel do begin

Result:= (DTime[Rho] + DSpace[RhoU]) / C0.Val;

end;

end;

Figure 5: The implicit evaluation function accessed by a grid state variable
Rho (density) contained within a node of a two-dimensional (position-time)
grid of a gas domain. The returned result is the degree by which the Þnite-
difference continuity equation is unsatisÞed. Variable RhoU (density × ve-
locity) is another grid state variable. C0 is a normalization constant deÞned
in the model component owning the grid. Built-in grid methods DTime and
DSpace perform time and spatial Þnite-differencing.

once the grid structure is in place.
From a programmer point of view the use of these object-oriented com-

putational grids is different than the traditional approach. The programmer
is freed from dealing with the grid structure each time something new is to
be modeled. Instead, all that structure is inherited from the proper ancestral
grid class. The focus is instead on programming a number of individual eval-
uation functions for particular state variables, according to position within
the grid. There is some overhead involved in setting up a Þnite-difference
scheme this way, but it is generally of a routine nature. The big payoff is in
code reliability and maintainability. And not to be taken lightly is the ability
to use inheritance to create family trees of computational grids of ever in-
creasing complexity. For example, there might be an ancestral grid for solving
the Þnite-difference equations associated with compressible gas ßow in ducts.
Descendant grids might add reÞnements for particular turbulence-transition
models, or detailed empirical heat-transfer or pressure-drop correlations for
particular ßow geometry.

Solving

A typical aggregate of model components, grids and connectors, might com-
prise perhaps thousands of individual variables, many of which are implicit

23

variables with values to be solved so as to zero their evaluation functions,
which are generally nonlinear. So who solves them?
A nonlinear equation solver does. The strategy is iterative, based on a se-

quence of linear equations which locally approximate the nonlinear equation
system. The coefficients of the linearized equations result from numerical
partial derivatives of the implicit evaluation functions taken with respect to
the model�s implicit variables. The result is a sparse matrix, solved with a
special sparse-matrix solver. The solution becomes a search direction along
which to seek the nonlinear solution. This process repeats until the nonlinear
model equations are all satisÞed within some prescribed tolerance.
Mathematically, each iteration takes the form of solving the equation

J∆V = −F
for the step ∆V , where J is the Jacobian (partial-derivative) matrix and
F is the to-be-zeroed function vector. This is Newton�s method. While
Newton�s method works well for nearly linear system functions, it can fail
to converge for nonlinear ones, especially when the starting value for V is
far from the Þnal solution. In particular, discontinuities of implicit-variable
initial values across connections have been observed to be a chief cause of
non-convergence in Sage. The implicit function components corresponding
to these discontinuities are of the form F = V+ − V−, where V+ and V−
are the implicit variable values on either side of the connection. Newton�s
method tries to zero the discontinuity in one step, which tends to destabilize
the solution. It is not too difficult to avoid this problem by relaxing variable
discontinuities more slowly, which is what Sage�s nonlinear solver does.
The idea is to replace F on the right-hand side of the above equation

by ∆F , the desired change in F . For most components, ∆Fj is just −Fj,
meaning that Fj is allowed to step all the way to zero. But for key function
components (those of the form F = V+ − V−), ∆Fj is some smaller amount
� small enough to avoid destabilizing the solution. The maximum allowable
∆Fj is something that is left to individual instances of certain classes of
implicit variables to decide. I mention this innovation because it is one of
the few things about Sage�s nonlinear solution strategy that is not commonly
found in the literature on such things.
Also worthy of discussion is the use of numerical differencing for partial-

derivative calculations. In my opinion, this is all but essential for keeping
the programming task manageable and reliable. And it is reasonably effi-
cient. Starting with the current baseline values of all evaluation functions,

24

the implicit variables are stepped off one by one and partial derivatives ∂F
∂V

computed as two-point differences of each evaluation function and its base-
line value. But, generally, each evaluation function depends on only a few
neighboring implicit variable values. To take advantage of this sparsity, the
nonlinear equation solver maintains for each implicit variable a data struc-
ture known as the Affected Function Collection, or AFC for short. The AFC
contains the indices of all implicit variables with evaluation functions affected
by the given variable. The AVC is created in an initialization step by access-
ing the evaluation functions for each implicit variable one by one, until the
function calls ultimately terminate in references to other implicit variables.
Then, the index of the implicit variable containing the evaluation function is
stored in the AFC of each terminally referenced implicit variable. So by use
of the AFC, only affected evaluation functions need be evaluated when cal-
culating partial derivatives ∂F

∂V
for any given V . The evaluation mechanism

previously discussed is also helpful. As ∂F
∂V
�s are computed for a given im-

plicit variable, repeatedly-accessed dependent variables evaluate themselves
only once, after which they simply return a stored value.

Optimizing

A model solved according to the user-supplied values of its input variables is
useful, but not as useful as it could be. Most engineers also want to optimize
their designs. Optimization is one of those words that is loosely applied to a
wide range techniques, but in Sage it involves:

� A set of independent input variables, known as the optimized variables,
to be automatically varied

� An arbitrary number of equality or inequality constraints to be satisÞed
� An objective function to be minimized or maximized

This is technically known as a nonlinear programming problem and the task
of implementing the nonlinear programming algorithm is the job of a non-
linear optimizer, yet another object class. The nonlinear optimizer resides
at a higher level than the nonlinear solver because it calls upon the solver
repeatedly to do its job.
The nonlinear optimizer in Sage employs a variation of Powell�s sequential-

quadratic-programming method [1] which locally approximates the nonlinear

25

optimization problem by a succession of quadratic sub-problems (quadratic
objective function and linear constraints) each of which is readily solved. The
idea is that by doing this often enough and searching along the direction from
the current point to where the quadratic minimizer lies, one will eventually
converge to the actual nonlinear minimizer � or rather a minimizer if there
happens to be more than one. Powell�s algorithm builds up its quadratic
programming problems as it steps along by accumulating second derivative
information about the objective function and constraints. It then turns to a
separate quadratic optimizer for the sub-problem solution. In the Sage im-
plementation, the quadratic optimizer is a convex method suited to Powell�s
method, reported by Goldfarb and Idnani [2].

Constraints and Objective Function

Formulating the optimization problem is done interactively at run time. The
user actually creates constraints and the objective function as required, which
are themselves streamable software objects that become part of the model
structure. Both involve, at their core, string expressions supplied by the user
interactively at run time. These string expressions are exactly like those em-
ployed by the special user-deÞned variables mentioned earlier and, indeed,
may reference these variables. An acceptable expression is any string involv-
ing numerical constants, referenced variables and the usual operations such
as +,−, ∗, /, with nested parenthesis and obeying the usual rules of syntax
common to most programming languages. Dealing with such string expres-
sions requires Sage to have a built in parser in order to convert them to
an operation tree which, when traced-through in tree-order, carries out the
actual computation. Parsing in Sage is very much like the compile and link
steps of a typical programming language and takes place just prior to model
solution or optimization automatically, or by menu command at any time.

Larger Issues

So what happens if we put all these ingredients together? Well, for one, we
wind up with a big program. If Sage were a book it would be a 1000 page
novel. Right now about 600 pages support the general architecture, including
visual interface, while the remaining 400 pages pertain to speciÞc model
components. Maybe, one day, the proportions will be reversed as model

26

components become more numerous � which they surely will. Especially
if the model-component concept catches on in the computational world at
large.
What are the chances of this � of one day being able to draw upon

a vast library of model components to simulate all sorts of things beyond
stirling machines? Bicycles perhaps? That Boeing 747? The nervous system
of a leech? I believe there is a trend in this direction � and not just in
this article. Although, it would certainly help matters if operating systems
and programming languages would evolve in directions more supportive of
interchangeable model components. Right now, in Sage, model components
are non-standardized objects residing in statically-linked executable modules
rather than standardized objects residing in dynamically-linked library Þles.
Another problem is � and I am speaking from experience here � it is not
always immediately obvious how to break down a complex system into self-
contained interchangeable model components of maximum usability. But in
spite of the obstacles, I personally Þnd the interchangeable-model-component
vision of the future more appealing than, say, another generation of word
processors or spreadsheets.

The Scope Thing

But enough of the future. Sage is up and running right now and doing useful
work in the hands of a small but diverse band of faithful engineers. These
engineers are behaving as expected and constantly changing their models.
Even asking for new model components. And guess what? Sage model com-
ponents are proving to be especially reliable, maintainable and extendible
� though still not always perfect in modeling the underlying physics. The
largest scope model yet simulated has been an equilibrium periodic cycle for
a three-stage refrigerator with about a dozen or so interconnected top-level
components � cylinder spaces, heat exchangers, valves, reservoirs � com-
prising about 2000 simultaneously solved implicit variables. Perhaps not that
many plumbing components compared to a typical chemical plant but you
can do a lot with 2000 variables. Especially if each one is relatively intelli-
gent. The optimization performed for the largest-scope model yet simulated
involved about thirty optimized variables � mostly heat-exchanger dimen-
sions � subject to about a dozen or so constraints with the objective of
minimizing electrical input power for a given amount of refrigeration power.

27

Execution time was fast enough that one or two optimization trials could be
conducted in an hour or so. For scopes much larger than this, Sage may have
to polish up its sparse matrix solver and nonlinear optimizer but seems to
be fundamentally sound.

References

[1] M. J. D. Powell, A Fast Algorithm for Nonlinearly Constrained Opti-
mization Calculations, in: Lecture Notes in Mathematics, 630, Numerical
Analysis (Proc. Biennial Conf. at Dundee, 1977), Springer-Verlag (1978)

[2] D. Goldfarb, A. Idnani, A Numerically Stable Dual Method for Solving
Strictly Convex Quadratic Programs, Mathematical Programing, 27, pp.
1�33, (1983)

28

