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Sage Model Notes 
 

SeriesRLCcircuit.scfn 
 
D. Gedeon 
16 December 2011 (revised 1 November 20224) 
 
A model for a series RLC (resistor-inductor-capacitor) electrical circuit using Sage simple 
electrical components introduced in version 9.  
 
In conventional electrical circuit notation the circuit schematic for this model is 
represented by this picture borrowed from Wikipedia: 

 
 
 
The equivalent Sage model looks like this: 

 
The model is set up to demonstrate how the amplitude and phase of the current through 
the RLC leg of the circuit responds to frequency. What drives the model is the constant 
voltage amplitude and phase of the voltage source, set by this inputs: 
  

Inputs 
    FDeltaV          Vpos-Vneg (V, deg)                       0.000E+00... 
    ( 1.000)E+01 Amp 
    ( 0.000)E+00 Arg 
 

The frequency of the driving voltage is set by the root level input Freq.  
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For convenience the impedance values of the three electrical components (resistor, 
inductor and capacitor) are recast in terms of three user-defined inputs at the root level: 
 

Inputs 
  Rcirc  circuit resistance (ohm) 1.000E+01 
  Lcirc  circuit inductance (H) 5.000E-02 
  Ccirc circuit capacitance (F) 5.000E-05 

 
One reason for doing this is so that the theoretical resonant frequency (below) can be 
calculated at the root model level as a user-defined output. 
 

FreqResonance resonant frequency 1.007E+02 
   Sqrt(1/(Lcirc*Ccirc)) / (2*Pi) 

 
For convenient reference the current amplitude and phase are also provided as user-
defined outputs. 
 

Iamp  current amplitude  3.601E-01 
    IRamp 
 
Iphase  current phase  1.111E+02 
    IRphase 

 
The defining values IRamp and IRphase are other user-defined variables exported from 
the resistor component. It doesn’t matter which component since the currents are all the 
same in a series circuit. 
 
The model is setup to map frequency over the range of 50 –150 Hz. When the resulting 
Sage.map file imported into MS Excel and plotted the results are the familiar amplitude 
and phase response curves for a damped resonant system: 
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Theoretical Resonant Frequency 
 
Equating the voltage drop across the voltage source to the voltage drops across the three 
components and representing the component voltage drops by their defining equations, 
the governing equation between voltage source and current in this circuit is  
 

CIILIRVsource /   

 
Where dots refer to time derivatives. Under the usual complex (phasor) analysis 

assumptions, namely that physical current is the real part of tiIe  and likewise for 
voltage, this equation becomes  

  RCLi

V
I source





 /1

 

 
It follows that the amplitude of current I is inversely proportional to the magnitude of the 
denominator on the right side. That magnitude is 
 

     2/122/1/1 RCLRCLi    

 
Differentiating with respect to ω and setting the result equal to zero shows that the 
minimum magnitude in the denominator (maximum current amplitude) occurs at  
 

LC

1
0   

Converted to Hz this is just the above user variable FreqResonance, which works out to 
100.7 Hz in this case, in good agreement with the above plot. 
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Higher Harmonics 
 
Something not considered in linear (phasor) resonant circuit analysis is the presence of 
higher harmonics in the voltage and current solutions. But no problem for the Sage 
model. You can investigate these harmonics by including higher order terms in the 
voltage source input FDeltaV.  
 


